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Abstract The symmetry-itemized enumeration of quadruplets of stereoisograms is
discussed by starting from a tetrahedral skeleton, where the partial-cycle-index (PCI)
method of the unit-subduced-cycle-index approach (Fujita in Symmetry and com-
binatorial enumeration of chemistry. Springer, Berlin, 1991) is combined with the
stereoisogram approach (Fujita in J Org Chem 69:3158–3165, 2004, Tetrahedron
60:11629–11638, 2004). Such a tetrahedral skeleton as contained in the quadruplet
of a stereoisogram belongs to an RS-stereoisomeric group denoted by Tdσ̃̂I , where
the four positions of the tetrahedral skeleton accommodate achiral and chiral proli-
gands to give quadruplets belonging to subgroups of Tdσ̃̂I according to the stereoiso-
gram approach. The numbers of quadruplets are calculated as generating functions by
applying the PCI method. They are itemized in terms of subgroups of Tdσ̃̂I , which
are further categorized into five types. Quadruples for stereoisograms of types I–V
are ascribed to subgroups of Tdσ̃̂I , where their features are discussed in comparison
between RS-stereoisomeric groups and point groups.

Keywords Stereochemistry · RS-stereoisomer · Combinatorial enumeration ·
USCI approach · Stereoisogram

1 Introduction

The unit-subduced-cycle-index (USCI) approach developed by Fujita [1] supports
four methods of symmetry-itemized enumeration of chemical compounds as three-
dimensional structures, i.e., the fixed-point matrix (FPM) method [2–4], the partial-
cycle-index (PCI) method [5,6], the elementary superposition method [7], and the
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partial superposition method [5,7]. These methods have been applied to enumeration of
chemical compounds under the action of point groups. As recent examples, symmetry-
itemized enumeration of cubane derivatives have been conducted by applying the FPM
method [8], the PCI method [9], and the elementary-superposition method [10] under
the action of the point group Oh .

On the other hand, the stereoisogram approach developed by Fujita [11,12] has
extended point groups into RS-stereoisomeric groups, where the point-group theory
is integrated with the permutation-group theory. By the stereoisogram approach cou-
pled with the USCI approach, we are able to enumerate chemical compounds under
the action of RS-stereoisomeric groups, so that type-itemized enumeration of quadru-
plets of RS-stereoisomers has been conducted under the action of RS-stereoisomeric
groups [13].

In Part I of the present series (the accompanying paper), the subgroups of the RS-
stereoisomeric group for characterizing stereoisograms based on a tetrahedral skeleton
have been discussed by considering the isomorphism between the RS-stereoisomeric
group and the point group Oh . Thereby, symmetry-itemized enumeration has been
conducted under the action of RS-stereoisomeric groups, where the FPM method of
the USCI approach has been adopted. For the purpose of demonstrating the usefulness
of the combination of the USCI approach and the stereoisogram approach, the present
article is devoted to the PCI method of the USCI approach is adopted to enumerate
quadruplets of RS-stereoisomers in a symmetry-itemized fashion under the action of
the RS-stereoisomeric group on a tetrahedral skeleton.

2 Symmetry-itemized enumeration by the PCI method

2.1 Orbits and coset representations characterized by RS-stereoisomeric groups

A set of equivalent positions of a skeleton belongs to an orbit, which is governed
by a coset representation [1]. Such a coset representation as represented by the sym-
bol Ǵ(/Ǵi ) (Ǵi ⊂ Ǵ) can be considered in the case of an RS-stereoisomeric group
Ǵ, which characterizes a quadruplet of RS-stereoisomers. The coset representation
Ǵ(/Ǵi ) is based on a coset decomposition of the group Ǵ by its subgroup Ǵi (Ǵi ⊂ Ǵ),
where the subgroup (Ǵi ) is regarded as a stabilizer. The coset representation Ǵ(/Ǵi )

is characterized by a mark, which collects the numbers of fixed points on the action
of each subgroup contained in a non-redundant set of subgroups (SSG).

The RS-stereoisomeric group for characterizing a tetrahedral skeleton is denoted
by the symbol Tdσ̃̂I , which is constructed by starting from the point group Td [14].
The RS-stereoisomeric group Tdσ̃̂I is isomorphic to the point group Oh , so that it has
33 subgroups up to conjugacy to provide a non-redundant SSG, as discussed in Part I
of this series:

SSGTdσ̃̂I
=

{

1
C1,

2
C2,

3
Cσ̃ ,

4
Cσ̂ ,

5
Cs,

6
C

̂I ,
7

C3,
8

S̃4,
9

S4,
10
D2,

11
C2σ̃ ,

12
C2σ̂ ,

13
C2v,

14
Csσ̃ σ̂ ,

15
C2̂I ,

16
Csσ̃̂I ,

17
C3σ̃ ,

18
C3v,

19
C3̂I ,

20
D2σ̃ ,

21
S̃4σ̂ ,

22
S̃4̂I ,

23
D2d ,

24
S4σ̃ σ̂ ,

25
D2̂I ,

26
C2vσ̃̂I ,

27
T,

28
C3vσ̃̂I ,

29
D2dσ̃̂I ,

30
Tσ̃ ,

31
T

̂I ,
32
Td ,

33
Tdσ̃̂I

}

, (1)
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Fig. 1 Reference tetrahedral
skeleton. The orbit of the four
vertices corresponds to the coset
representation Tdσ̃̂I (/C3vσ̃̂I )

under the RS-stereoisomeric
group Tdσ̃̂I and to the coset
representation Td (/C3v) under
the point group Td

where the subgroups are aligned in the ascending order of their orders. For the conve-
nience of cross reference, sequential numbers from 1 to 33 are attached to the respective
subgroups. The mark table of Tdσ̃̂I as a 33 × 33 square matrix MTdσ̃̂I

is identical with
that of Oh (cf. Table 1 of [15] and Table 1 of [8]), if the SSGTdσ̃̂I

is constructed
in accordance with SSGOh . For practices of calculations, the corresponding inverse
matrix is also necessary, as reported in Table 2 of [15] and Table 2 of [8]. The 33 × 33
matrix form M−1

Tdσ̃̂I
of the inverse mark table of Tdσ̃̂I is also reported as Eq. 53 of Part

I of this series.
The coset representation Tdσ̃̂I (/Ǵi ) (Ǵi ∈ SSGTdσ̃̂I

) is calculated in a parallel way
to the coset representation Oh(/Gi ) (Gi ∈ SSGOh ), as shown in Part I of this series.
For example, the coset representation Tdσ̃̂I (/C3vσ̃̂I ) is calculated to have an identical
set of products of cycles with the coset representation Oh(/D3d), as shown in Part I
of this series.

The four positions of a tetrahedral skeleton 1 construct an orbit governed by
the coset representation Tdσ̃̂I (/C3vσ̃̂I ), the degree of which is calculated to be
|Tdσ̃̂I |/|C3vσ̃̂I | (= 48/12 = 4). The RS-stereoisomeric group Tdσ̃̂I exhibits the global
symmetry of the tetrahedral skeleton 1, while its subgroup C3vσ̃̂I exhibits the local
symmetry of each of the four vertices (Fig. 1).

As reported in Eq. 48 of the Part I of this series, the group C3vσ̃̂I consists of the
following set of operations:

C3vσ̃̂I =
{

I, C3(1), C2
3(1), σ̃d(1), σ̃d(2), σ̃d(3),

̂I , ̂C3(1), ̂C2
3(1), σd(1), σd(2), σd(3)

}

, (⊃ C3v) (2)

The group C3vσ̃̂I as an RS-stereoisomeric group is constructed by extending the point
group C3v:

C3v =
{

I, C3(1), C2
3(1), σd(1), σd(2), σd(3)

}

(3)

according to a general procedure of constructing stereoisograms and RS-stereoisomeric
groups [11,14].

It should be noted that the four positions of the tetrahedral skeleton 1 are alterna-
tively regarded as being governed by the coset representation Td(/C3v), if the skeleton
1 is considered to belong to the point group Td . From this point of view, the point
group Td exhibits the global symmetry of the tetrahedral skeleton 1, while its sub-
group C3v exhibits the local symmetry of each of the four vertices. Hence, it is one
of the important targets of the present paper to compare between Tdσ̃̂I (/C3vσ̃̂I ) and
Td(/C3v), which are operated onto the same skeleton 1.
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2.2 Partial cycle indices with chirality fittingness

According to the formulation of the USCI approach [1], the mark table MTdσ̃̂I
and

its inverse M−1
Tdσ̃̂I

are further used for subductions of coset representations, i.e.,

Tdσ̃̂I (/Ǵi ) ↓ Ǵ j (for Ǵi , Ǵ j ∈ SSGTdσ̃̂I
). The results of such subductions are

combined with the concept of sphericities to give unit subduced cycle indices with
chirality fittingness (USCI-CFs), which are listed in a tabular form (the USCI-CF
table). Because the full form of the USCI-CF table of Tdσ̃̂I is identical with that of
Oh (Tables 4 and 5 in [8]), its Tdσ̃̂I (/C3vσ̃̂I )-row (the Oh(/D3d)-row of Tables 4
and 5 in [8]) is cited for the purpose of applying the PCI method to the tetrahedral
skeleton:

USCI-CFTdσ̃̂I (/C3vσ̃̂I )

=
{

b4
1, b2

2, b2
1b2, c2

2, a2
1c2, a4

1, b1b3, b4, c4, b4, b2
2, c4, a2

2 , a2c2, a2
2 , a2

1a2, b1b3,

a1a3, a1a3, b4, a4, a4, a4, c4, a4, a2
2 , b4, a1a3, a4, b4, a4, a4, a4

}

(4)

which has been also listed in Table 3 of Part I of this series. The USCI-CFs in Eq. 4
are listed in the order of SSGTdσ̃̂I

(Eq. 1). Note that the symbols ad , bd , cd denote
sphericity indices, where ad is assigned to a d-membered homospheric orbit of substi-
tution positions, bd is assigned to a d-membered hemispheric orbit, and cd is assigned
to a d-membered enantiospheric orbit.

Section 16.3 and Section 19.5 of [1] have discussed partial cycle indices without and
with chirality fittingness (PCIs and PCI-CFs). According to Def. 19.6 of [1], PCI-CFs
for enumerating RS-stereoisomers are calculated by using the USCI-CFTdσ̃̂I (/C3vσ̃̂I )

(Eq. 4), which is multiplied by the inverse mark table of Tdσ̃̂I (Eq. 53 of Part I of this
series):

USCI-CFTdσ̃̂I (/C3vσ̃̂I )
× M−1

Tdσ̃̂I
= (PCI-CF(C1), . . . , PCI-CF(Ǵi ), . . . , PCI-CF(Tdσ̃̂I )),

(5)

where Ǵi runs to cover the SSGTdσ̃̂I
(Eq. 1). When the USCI-CFTdσ̃̂I (/C3vσ̃̂I )

(Eq. 4)
is regarded as a row vector of USCI-CFs, the result of Eq. 5 is also regarded as a
row vector, in which each column component, i.e., PCI-CF(Ǵi ) as a polynomial of
ad , bd , and cd , corresponds to the PCI-CF of a subgroup at issue, Ǵi . For example,
the C1-column of Eq. 5 (i.e., PCI-CF(C1)) is calculate as follows:

PCI-CF(C1) = USCI-CFTdσ̃̂I (/C3vσ̃̂I )

×T
(

1

48
,− 1

16
,−1

8
,− 1

16
,−1

8
,− 1

48
,− 1

12
, 0, 0,

1

24
,

1

8
,

1

8
,

1

8
,

1

4
,

1

8
,

1

4
,

1

4
,

1

4
,

1

12
, 0, 0, 0, 0, 0,−1

6
,−1

2
,

1

12
,−1

2
, 0,−1

4
,

− 1

12
,−1

4
,

1

2

)

, (6)
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where the symbol T of the last vector represents the transpose of the C1-column of
the inverse mark table M−1

Tdσ̃̂I
. The vector calculation of Eq. 6 gives Eq. 7. Similarly,

PCI-CFs for every subgroups of SSGTdσ̃̂I
(Eq. 1) are obtained as follows, where the

sequential numbers are shown over the respective equality symbols for the convenience
of cross reference.

PCI-CF(C1)
1=

III

1

48
b4

1 − 1

48
a4

1 − 1

8
b2

1b2 + 1

4
a2

1a2 − 1

8
a2

1c2 + 1

6
b1b3 − 1

6
a1a3

+ 1

16
b2

2 − 1

4
a2

2 + 1

4
a2c2 − 1

16
c2

2 + 1

8
c4 − 1

8
b4 (7)

PCI-CF(C2)
2=

III
0 (8)

PCI-CF(Cσ̃ )
3=
II

1

4
b2

1b2 − 1

4
a2

1a2 − 1

2
b1b3 + 1

2
a1a3 − 1

4
b2

2 + 1

2
a2

2

−1

4
a2c2 + 1

2
b4 − 1

2
a4 (9)

PCI-CF(Cσ̂ )
4=
I

1

8
a2

2 − 1

4
a2c2 + 1

8
c2

2 − 1

4
c4 + 1

4
a4 (10)

PCI-CF(Cs)
5=
V

1

4
a2

1c2 − 1

4
a2

1a2 + 1

4
a2

2 − 1

4
a2c2 (11)

PCI-CF(C
̂I )

6=
I

1

24
a4

1 − 1

4
a2

1a2 + 1

3
a1a3 + 1

8
a2

2 − 1

4
a4 (12)

PCI-CF(C3)
7=

III
0 (13)

PCI-CF(S̃4)
8=
II

0 (14)

PCI-CF(S4)
9=
V

0 (15)

PCI-CF(D2)
10=
III

0 (16)

PCI-CF(C2σ̃ )
11=
II

1

4
b2

2 − 1

4
a2

2 − 1

4
b4 − 1

4
c4 + 1

2
a4 (17)

PCI-CF(C2σ̂ )
12=
I

0 (18)

PCI-CF(C2v)
13=
V

0 (19)

PCI-CF(Csσ̃ σ̂ )
14=
IV

1

2
a2c2 − 1

2
a2

2 (20)

PCI-CF(C2̂I )
15=
I

0 (21)

PCI-CF(Csσ̃̂I )
16=
IV

1

2
a2

1a2 − a1a3 − 1

2
a2

2 + a4 (22)

PCI-CF(C3σ̃ )
17=
II

1

2
b1b3 − 1

2
a1a3 − 1

2
b4 + 1

2
a4 (23)
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PCI-CF(C3v)
18=
V

0 (24)

PCI-CF(C3̂I )
19=
I

0 (25)

PCI-CF(D2σ̃ )
20=
II

0 (26)

PCI-CF(S̃4σ̂ )
21=
IV

0 (27)

PCI-CF(S̃4̂I )
22=
IV

0 (28)

PCI-CF(D2d)
23=
V

0 (29)

PCI-CF(S4σ̃ σ̂ )
24=
IV

1

2
c4 − 1

2
a4 (30)

PCI-CF(D2̂I )
25=
I

0 (31)

PCI-CF(C2vσ̃̂I )
26=
IV

1

2
a2

2 − 1

2
a4 (32)

PCI-CF(T)
27=
III

0 (33)

PCI-CF(C3vσ̃̂I )
28=
IV

a1a3 − a4 (34)

PCI-CF(D2dσ̃̂I )
29=
IV

0 (35)

PCI-CF(Tσ̃ )
30=
II

1

2
b4 − 1

2
a4 (36)

PCI-CF(T
̂I )

31=
I

0 (37)

PCI-CF(Td)
32=
V

0 (38)

PCI-CF(Tdσ̃̂I )
33=
IV

a4 (39)

Note that a Roman numeral below each equality symbol represents the stereoisogram
type at issue (types I–V) according to Fig. 8 (and Eqs. 124–128) of Part I of this series.

2.3 Generating functions for symmetry-itemized enumeration

Suppose that substituents for the four positions of 1 are selected from an inventory of
proligands:

X = {A, B, X, Y; p, q, r, s; p, q, r, s} , (40)

where the letters A, B, X, and Y represent achiral proligands and the pairs of p/p,
q/q, r/r, and s/s represent pairs of enantiomeric proligands in isolation. According
to Theorem 19.6 (or Theorem 9.7) of [1], we use the following ligand-inventory
functions:
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ad = Ad + Bd + Xd + Yd (41)

cd = Ad + Bd + Xd + Yd + 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2

(42)

bd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd . (43)

It should be noted that the power d/2 appearing in Eq. 42 is an integer because the sub-
script d of cd is always even in the light of the enantiosphericity of the corresponding
orbit.

The ligand-inventory functions (Eqs. 41–43) are introduced into the PCI-CFs
(Eqs. 7–39) so as to give the following generating functions:

fC1

1=
III

{

1

2
(ABXp + ABXp) + · · ·

}

+
{

1

2
(ABpq + ABpq) + · · ·

}

+
{

1

2
(Appq + Appq) + · · ·

}

+
{

1

2
(Apqr + Apqr) + · · ·

}

+
{

1

2
(pqrs + pqrs) + · · ·

}

+
{

1

2
(ppqr + ppqr) + · · ·

}

(44)

fCσ̃

3=
II

{

1

2
(A2Bp + A2Bp) + · · ·

}

+
{

1

2
(ABp2 + ABp2) + · · ·

}

+
{

1

2
(A2pq + A2pq) + · · ·

}

+
{

1

2
(Ap2p + App2) + · · ·

}

+
{

1

2
(Ap2q + Ap2q) + · · ·

}

+
{

1

2
(p2pq + pp2q) + · · ·

}

+
{

1

2
(p2qq + p2qq) + · · ·

}

+
{

1

2
(p2qr + p2qr) + · · ·

}

(45)

fCσ̂

4=
I

{ppqq + pprr + · · · } (46)

fCs

5=
V

{ABpp + ABqq + · · · } (47)

fC
̂I

6=
I

ABXY (48)

fC2σ̃

11=
II

{

1

2
(A2p2 + A2p2) + · · ·

}

+
{

1

2
(p2q2 + p2q2) + · · ·

}

(49)

fCsσ̃ σ̂

14=
IV

{

A2pp + · · ·
}

(50)

fCsσ̃̂I

16=
IV

{

A2BX + A2BY + · · ·
}

(51)

fC3σ̃

17=
II

{

1

2
(A3p + A3p) + · · ·

}

+
{

1

2
(Ap3 + Ap3) + · · ·

}

+
{

1

2
(p3q + p3q) + · · ·

}

+
{

1

2
(p3p + pp3) + · · ·

}

(52)
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fS4σ̃ σ̂

24=
IV

{

p2p2 + q2q2 + r2r2 + s2s2
}

(53)

fC2vσ̃̂I

26=
IV

{

A2B2 + A2X2 + A2Y2 + · · ·
}

(54)

fC3vσ̃̂I

28=
IV

{

A3B + A3X + A3Y + · · ·
}

(55)

fTσ̃

30=
II

{

1

2
(p4 + p4) + · · ·

}

(56)

fTdσ̃̂I

33=
IV

{

A4 + B4 + X4 + Y4
}

(57)

where generating functions of zero value are omitted (cf. the sequential numbers
above the equality symbols). The coefficient of the term AaBbXx Yyppppqqqq rr qr ssqs

indicates the number of fixed promolecules (quadruplets) to be counted. Because A,
B, etc. appear symmetrically, each pair of braces contains at least one representative
of such symmetrically appearing terms, which can be represented by the following
partition:

[θ ] = [a, b, x, y; p, p, q, q, r, r , s, s] , (58)

where we put a ≥ b ≥ x ≥ y, p ≥ p, q ≥ q, r ≥ r , s ≥ s, and p ≥ q ≥ r ≥ s
without losing generality.

The results collected in Eqs. 44–57 are consistent with those of Eqs. 110 and 123
reported in Part I of this series, where the 30 pairs of braces appearing in Eqs. 44–57
corresponds the partitions [θ ]1–[θ ]30 discussed in Part I. As a result, Figs. 9 and 10 of
Part I also illustrate the enumeration results collected in Eqs. 44–57.

3 Type-itemized enumeration by the PCI method

3.1 CI-CFs for characterizing five types of stereoisograms

The 33 subgroups of the RS-stereoisomeric group Tdσ̃̂I are categorized into five types
represented by the following sets:

Type I:SG[I]
Tdσ̃̂I

=
{

4
Cσ̂ ,

6
C

̂I ,
12

C2σ̂ ,
15

C2̂I ,
19

C3̂I ,
25

D2̂I ,
31
T

̂I

}

(59)

Type II:SG[II]
Tdσ̃̂I

=
{

3
Cσ̃ ,

8
S̃4,

11
C2σ̃ ,

17
C3σ̃ ,

20
D2σ̃ ,

30
Tσ̃

}

(60)

Type III:SG[III]
Tdσ̃̂I

=
{

1
C1,

2
C2,

7
C3,

10
D2,

27
T

}

(61)

Type IV:SG[IV]
Tdσ̃̂I

=
{

14
Csσ̃ σ̂ ,

16
Csσ̃̂I ,

21
S̃4σ̂ ,

22
S̃4̂I Tdσ̃̂I

,
24

S4σ̃ σ̂ ,
26

C2vσ̃̂I ,
28

C3vσ̃̂I ,
29

D2dσ̃̂I ,
33

Tdσ̃̂I

}

(62)

Type V:SG[V] =
{

5
Cs,

9
S4,

13
C2v,

18
C3v,

23
D2d ,

32
Td

}

. (63)

123



J Math Chem (2014) 52:543–574 551

These sets have been listed in Eqs. 124–128 of Part I of this series. These sets corre-
spond to stereoisograms of type I–V, respectively.

According to Eqs. 59–63, cycle indices with chirality fittingness (CI-CFs) for char-
acterizing five types are defined as follows:

CI-CF[I] = PCI-CF(Cσ̂ ) + PCI-CF(C
̂I ) + PCI-CF(C2σ̂ )

+ PCI-CF(C2̂I ) + PCI-CF(C3̂I ) + PCI-CF(D2̂I )

+ PCI-CF(T
̂I ) (64)

CI-CF[II] = PCI-CF(Cσ̃ ) + PCI-CF(S̃4) + PCI-CF(C2σ̃ )

+ PCI-CF(C3σ̃ ) + PCI-CF(D2σ̃ ) + PCI-CF(Tσ̃ ) (65)

CI-CF[III] = PCI-CF(C1) + PCI-CF(C2) + PCI-CF(C3)

+ PCI-CF(D2) + PCI-CF(T) (66)

CI-CF[IV] = PCI-CF(Csσ̃ σ̂ ) + PCI-CF(Csσ̃̂I ) + PCI-CF(S̃4σ̂ )

+ PCI-CF(S̃4̂I ) + PCI-CF(S4σ̃ σ̂ ) + PCI-CF(C2vσ̃̂I )

+ PCI-CF(C3vσ̃̂I ) + PCI-CF(D2dσ̃̂I ) + PCI-CF(Tdσ̃̂I ) (67)

CI-CF[V] = PCI-CF(Cs) + PCI-CF(S4) + PCI-CF(C2v)

+ PCI-CF(C3v) + PCI-CF(D2d) + PCI-CF(Td) (68)

The PCI-CFs listed in Eqs. 6–39 are added according to the definitions shown by
Eqs. 64–68. Note that the symbols I–V below the equality symbols in the PCI-CFs
(Eqs. 6–39) represent the categories of the five types. Thereby, we obtain the following
type-itemized CI-CFs:

CI-CF[I] = 1

24
a4

1 − 1

4
a2

1a2 + 1

3
a1a3 + 1

4
a2

2 − 1

4
a2c2 + 1

8
c2

2 − 1

4
c4 (69)

CI-CF[II] = 1

4
b2

1b2 − 1

4
a2

1a2 + 1

4
a2

2 − 1

4
a2c2 + 1

4
b4 − 1

4
c4 (70)

CI-CF[III] = 1

48
b4

1 − 1

48
a4

1 − 1

8
b2

1b2 + 1

4
a2

1a2 − 1

8
a2

1c2 + 1

6
b1b3 − 1

6
a1a3

+ 1

16
b2

2 − 1

4
a2

2 + 1

4
a2c2 − 1

16
c2

2 + 1

8
c4 − 1

8
b4 (71)

CI-CF[IV] = 1

2
a2

1a2 − 1

2
a2

2 + 1

2
a2c2 + 1

2
c4 (72)

CI-CF[V] = 1

4
a2

1c2 − 1

4
a2

1a2 + 1

4
a2

2 − 1

4
a2c2 (73)

These CI-CFs are verified by comparison with those of [13], which have been
calculated by means of an alternative method. That is to say, CI-CF[I] (Eq. 69) is
identical with Eq. 83 of [13]; CI-CF[II] (Eq. 70) with Eq. 84 of [13]; CI-CF[III] (Eq. 71)
with Eq. 85 of [13]; CI-CF[IV] (Eq. 72) with Eq. 81 of [13]; and CI-CF[V] (Eq. 69) is
identical with Eq. 82 of [13].
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3.2 Generating functions for type-itemized enumeration

The ligand-inventory functions (Eqs. 41–43) are introduced into the CI-CFs (Eqs. 69–
73) so as to give the following generating functions:

f [I] = ABXY + {ppqq + pprr + · · · } (74)

f [II] =
{

1

2
(A2Bp + A2Bp) + · · ·

}

+
{

1

2
(ABp2 + ABp2) + · · ·

}

+
{

1

2
(A2pq + A2pq) + · · ·

}

+
{

1

2
(Ap2p + App2) + · · ·

}

+
{

1

2
(Ap2q + Ap2q) + · · ·

}

+
{

1

2
(p2pq + pp2q) + · · ·

}

+
{

1

2
(p2qq + p2qq) + · · ·

}

+
{

1

2
(p2qr + p2qr) + · · ·

}

+
{

1

2
(A2p2 + A2p2) + · · ·

}

+
{

1

2
(p2q2 + p2q2) + · · ·

}

+
{

1

2
(A3p + A3p) + · · ·

}

+
{

1

2
(Ap3 + Ap3) + · · ·

}

+
{

1

2
(p3q + p3q) + · · ·

}

+
{

1

2
(p3p + pp3) + · · ·

}

+
{

1

2
(p4 + p4) + · · ·

}

(75)

f [III] =
{

1

2
(ABXp + ABXp) + · · ·

}

+
{

1

2
(ABpq + ABpq) + · · ·

}

+
{

1

2
(Appq + Appq) + · · ·

}

+
{

1

2
(Apqr + Apqr) + · · ·

}

+
{

1

2
(pqrs + pqrs) + · · ·

}

+
{

1

2
(ppqr + ppqr) + · · ·

}

(76)

f [IV] =
{

A2pp + · · ·
}

+
{

p2p2 + q2q2 + r2r2 + s2s2
}

+
{

A2BX + A2BY + · · ·
}

+
{

A2B2 + A2X2 + A2Y2 + · · ·
}

+
{

A3B + A3X + A3Y + · · ·
}

+
{

A4 + B4 + X4 + Y4
}

(77)

f [V] = {ABpp + ABqq + · · · } (78)

The generating functions (Eqs. 74–78) are also obtained by starting from the gen-
erating functions for the respective subgroups (Eqs. 44–57), which are added accord-
ing to the categories shown in Eqs. 59–63. The generating functions (Eqs. 74–78)
are identical with Eqs. 86–90 of [13], which have been calculated by an alternative
method.
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Fig. 2 Stereoisogram of type I
which belongs to the
RS-stereoisomeric group C

̂I .
The reference promolecule 2
belongs to the point group C1

4 Examination of enumeration results

4.1 RS-stereoisomeric groups of type I

Among the RS-stereoisomeric groups listed in Eq. 59, there appear a quadruplet of C
̂I

having ABXY (Eq. 48) and a quadruplet of Cσ̂ having ppqq or a constitution of the
same partition (Eq. 46). They are totally counted by Eq. 74.

4.1.1 Quadruplet of C
̂I

The quadruplet of C
̂I having ABXY ([θ ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0]. cf.

Eq. 99 of Part I) is counted once (Eq. 48) and characterized by the stereoisogram of
type I, as shown in Fig. 2. The diagonal equality symbol shows the equivalence based
on the following RS-stereoisomeric group (Eq. 36 of Part I):

C
̂I = {

I, ̂I
} ∼

{

(1)(2)(3)(4), (1)(2)(3)(4)
}

, (79)

which is a subgroup of the following RS-stereoisomeric group (Eq. 43 of Part I):

Csσ̃̂I = {

I, σ̃d(1), ̂I , σd(1)

}

(80)

∼
{

(1)(2)(3)(4), (1)(2 4)(3), (1)(2)(3)(4), (1)(2 4)(3)
}

. (81)

It should be noted that the RS-stereoisomeric group Csσ̃̂I (Eq. 81) is isomorphic to
the Klein four group, which is in turn isomorphic to the factor group Tdσ̃̂I /T. Each
promolecule of the quadruplet shown in Fig. 2 is transformed into its homomeric
promolecule under the action of T so that it is regarded as a representative of each
coset appearing in the factor group Tdσ̃̂I /T.

From the viewpoint of the point-group theory, the reference promolecule 2 belongs
to the point group C1, so that a pair of 2/2 is counted once under the action of the
point group Td [16]. From the viewpoint of the RS-stereoisomeric-group theory, on
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(a) (b)

Fig. 3 Stereoisogram of type I which belongs to the RS-stereoisomeric group Cσ̂ . a The group Cσ̂ is
considered to be a subgroup of Csσ̃ σ̂ , where 3 is fixed under the action of Cσ̂ . The reference promolecule
3 belongs to the point group C1. b The group C

̂I (strictly speaking, the factor group Tdσ̃̂I /T) is used in
place of the group Cσ̂ , where a homomer 3′ as a holantimer is drawn in place of the original holantimer 3

the other hand, the reference promolecule 2 belongs to the RS-stereoisomeric group
C

̂I , so that a quadruplet of 2/2 (doubly contained in the stereoisogram represented by
Fig. 2) is counted once under the action of the RS-stereoisomeric group Tdσ̃̂I (Eq. 48).

4.1.2 Quadruplet of Cσ̂

The quadruplet of Cσ̂ having ppqq ([θ ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0].
cf. Eq. 119 of Part I) is counted once (Eq. 46) and characterized by the stereoisogram
of type I, as shown in Fig. 3a. The diagonal equality symbol shows the equivalence
based on the following RS-stereoisomeric group (Eq. 35 of Part I):

Cσ̂ = {

I, ̂C2(3)

} ∼
{

(1)(2)(3)(4), (1 3)(2 4)
}

, (82)

where the symbol σ̂ in the subscript is used in place of ̂C2(3) for the sake of convenience.
The group Cσ̂ is a subgroup of the following RS-stereoisomeric group (Eq. 42 of Part
I):

Csσ̃ σ̂ = {

I, σ̃d(1), ̂C2(3), σd(6)

}

(83)

∼
{

(1)(2)(3)(4), (1)(2 4)(3), (1 3)(2 4), (1 3)(2)(4)
}

. (84)

The RS-stereoisomeric group Csσ̃ σ̂ (Eq. 84) is isomorphic to the Klein four group,
which is in turn isomorphic to the factor group Tdσ̃̂I /T. Each promolecule of the
quadruplet shown in Fig. 3 is transformed into its homomeric promolecule under the
action of T so that it is regarded as a representative of each coset appearing in the
factor group Tdσ̃̂I /T.
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If we select the group Csσ̃̂I (Eq. 81) to characterize ppqq, we obtain another
stereoisogram shown in Fig. 3b, where there appear promolecules 3′ (correspond-
ing to (1)(2)(3)(4)) and 3

′
(corresponding to (1)(2 4)(3)). Under the action of T, the

promolecule 3′ is homomeric to 3, while the promolecule 3
′

is homomeric to 3. It
follows that Fig. 3b can be used in place of Fig. 3a, if we take account of the factor
group Tdσ̃̂I /T, which permits us to consider the homomerism due to T.

From the viewpoint of the point-group theory, the reference promolecule 3 belongs
to the point group C1, so that a pair of 3/3 is counted once under the action of the point
group Td [16]. From the viewpoint of the RS-stereoisomeric-group theory, on the other
hand, the reference promolecule 3 belongs to the RS-stereoisomeric group Cσ̂ so that
a quadruplet of 3/3 (doubly contained in the stereoisogram represented by Fig. 3a) is
counted once under the action of the RS-stereoisomeric group Tdσ̃̂I (Eq. 46).

4.2 RS-stereoisomeric groups of type II

Among the RS-stereoisomeric groups listed in Eq. 60, there appear quadruplets belong-
ing to Cσ̃ ( 1

2 (A2Bp + A2Bp), etc. in Eq. 45), C2σ̃ ( 1
2 (A2p2 + A2p2), etc. in Eq. 49),

C3σ̃ ( 1
2 (A3p + A3p), etc. in Eq. 52), and Tσ̃ ( 1

2 (p4 + p4), etc. in Eq. 56). They are
totally counted by Eq. 75.

4.2.1 Quadruplet of Cσ̃

The quadruplet of Cσ̃ having 1
2 (A2Bp+A2Bp) ([θ ]7 =[2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0].

cf. Eq. 96 of Part I) is counted once (Eq. 45) and characterized by the stereoisogram
of type II, as shown in Fig. 4. The horizontal equality symbol shows the equivalence
based on the following RS-stereoisomeric group (Eq. 29 of Part I):

Cσ̃ = {

I, σ̃d(1)

} ∼ {(1)(2)(3)(4), (1)(2 4)(3)} , (85)

which is a subgroup of the RS-stereoisomeric group Csσ̃̂I shown in Eq. 81. The Cσ̃ -
group contains no rotoreflections and no ligand reflections (with a hat accent in the
present notation).

From the viewpoint of the point-group theory, the reference promolecule 4 belongs
to the point group C1, so that a pair of 4/4 is counted once under the action of the
point group Td [16]. From the viewpoint of the RS-stereoisomeric-group theory, on
the other hand, the reference promolecule 4 belongs to the RS-stereoisomeric group
Cσ̃ , so that a quadruplet of 4/4 (doubly contained in the stereoisogram represented by
Fig. 4) is counted once under the action of the RS-stereoisomeric group Tdσ̃̂I (Eq. 45).

4.2.2 Quadruplet of C2σ̃

The quadruplet of C2σ̃ having 1
2 (A2p2+A2p2) ([θ ]5 =[2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0].

cf. Eq. 94 of Part I) is counted once (Eq. 49) and characterized by the stereoisogram
of type II, as shown in Fig. 5. The horizontal equality symbol shows the equivalence
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Fig. 4 Stereoisogram of type II
which belongs to the
RS-stereoisomeric group Cσ̃ .
The reference promolecule 4
belongs to the point group C1

Fig. 5 Stereoisogram of type II
which belongs to the
RS-stereoisomeric group C2σ̃ .
The reference promolecule 5
belongs to the point group C2

based on the following RS-stereoisomeric group (Eq. 31 of Part I):

C2σ̃ = {

I, C2(3), σ̃d(1), σ̃d(6)

}

(86)

∼ {(1)(2)(3)(4), (1 3)(2 4), (1)(2 4)(3), (1 3)(2)(4)} , (87)

which contains no rotoreflections and no ligand reflections. The pair of homomers 5
linked with a horizontal equality symbol indicates the representatives of the following
factor group:

C2σ̃ /C2 = {C2, σ̃d(1)C2}, (88)

where the representatives I and σ̃d(1) correspond to the products of cycles adopted
in Fig. 5, i.e., (1)(2)(3)(4) and (1)(2 4)(3). Note that the reference promolecule 5
belongs to the point group C2 [16], which is regarded as an RS-stereoisomeric group
of type II.

The RS-stereoisomeric group C2σ̃ (Eq. 87) is a subgroup of the RS-stereoisomeric
group C2vσ̃̂I (Eq. 47 of Part I):
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Fig. 6 Stereoisogram of type II
which belongs to the
RS-stereoisomeric group C3σ̃ .
The reference promolecule 6
belongs to the point group C3

C2vσ̃̂I = {

I, C2(3), σ̃d(1), σ̃d(6), ̂I , ̂C2(3), σd(1), σd(6)

}

(89)

∼
{

(1)(2)(3)(4), (1 3)(2 4), (1)(2 4)(3), (1 3)(2)(4)

(1)(2)(3)(4), (1 3)(2 4), (1)(2 4)(3), (1 3)(2)(4)
}

(90)

The type-II stereoisogram shown in Fig. 5 is drawn by considering the following
factor group:

C2vσ̃̂I /C2 = {C2, σ̃d(1)C2, ̂I C2, σd(1)C2}, (91)

which is isomorphic to the factor group the factor group Tdσ̃̂I /T. Note that the factor
group C2σ̃ /C2 (Eq. 88) is a subgroup of the factor group C2vσ̃̂I /C2 (Eq. 91).

4.2.3 Quadruplet of C3σ̃

The quadruplet of C3σ̃ having 1
2 (A3p + A3p) ([θ ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0].

cf. Eq. 91 of Part I) is counted once (Eq. 52) and characterized by the stereoisogram
of type II, as shown in Fig. 6. The horizontal equality symbol shows the equivalence
based on the following RS-stereoisomeric group (Eq. 32 of Part I):

C3σ̃ =
{

I, C3(1), C2
3(1), σ̃d(1), σ̃d(2), σ̃d(3)

}

(92)

∼ {(1)(2)(3)(4), (1)(2 3 4), (1)(2 4 3),

(1)(2 4)(3), (1)(2)(3 4), (1)(2 3)(4)} , (93)

where there appear no rotoreflections and no ligand reflections.
The pair of homomers 6 linked with a horizontal equality symbol indicates the

representatives of the following factor group:

C3σ̃ /C3 = {

C3, σ̃d(1)C3
}

, (94)
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where the representatives I and σ̃d(1) correspond to the products of cycles adopted
in Fig. 6, i.e., (1)(2)(3)(4) and (1)(2 4)(3). Note that the reference promolecule 6
belongs to the point group C3 [16], which is regarded as an RS-stereoisomeric group
of type II.

The RS-stereoisomeric group C3σ̃ (Eq. 93) is a subgroup of the RS-stereoisomeric
group C3vσ̃̂I (Eq. 48 of Part I):

C3vσ̃̂I =
{

I, C3(1), C2
3(1), σ̃d(1), σ̃d(2), σ̃d(3),

̂I , ̂C3(1), ̂C2
3(1), σd(1), σd(2), σd(3)

}

(95)

∼
{

(1)(2)(3)(4), (1)(2 3 4), (1)(2 4 3),

(1)(2 4)(3), (1)(2)(3 4), (1)(2 3)(4)

(1)(2)(3)(4), (1)(2 3 4), (1)(2 4 3),

(1)(2 4)(3), (1)(2)(3 4), (1)(2 3)(4)
}

(96)

The type-II stereoisogram shown in Fig. 6 is drawn by considering the following
factor group:

C3vσ̃̂I /C3 = {

C3, σ̃d(1)C3, ̂I C3, σd(1)C3
}

, (97)

which is isomorphic to the factor group the factor group Tdσ̃̂I /T. Note that the factor
group C3σ̃ /C3 (Eq. 94) is a subgroup of the factor group C3vσ̃̂I /C3 (Eq. 97).

4.2.4 Quadruplet of Tσ̃

The quadruplet of Tσ̃ having 1
2 (p4 + p4) ([θ ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0]. cf.

Eq. 111 of Part I) is counted once (Eq. 56) and characterized by the stereoisogram
of type II, as shown in Fig. 7. The horizontal equality symbol shows the equivalence
based on the following RS-stereoisomeric group (Eqs. 3 and 34 of Part I):

Tσ̃ = T + σ̃d(1)T, (98)

where there appear no rotoreflections and no ligand reflections. For the concrete forms
(products of cycles) of Eq. 98, see Table 1 of Part I of this series. The pair of homomers 7
linked with a horizontal equality symbol indicates the representatives of the following
factor group:

Tσ̃ /T = {

T, σ̃d(1)T
}

, (99)

where the representatives I and σ̃d(1) correspond to the products of cycles adopted in
Fig. 7, i.e., (1)(2)(3)(4) and (1)(2 4)(3).

The RS-stereoisomeric group Tσ̃ (Eq. 98) is a subgroup of the RS-stereoisomeric
group Tdσ̃̂I for characterizing the tetrahedral skeleton. The type-II stereoisogram
shown in Fig. 7 is drawn by considering the factor group Tdσ̃̂I /T.
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Fig. 7 Stereoisogram of type II
which belongs to the
RS-stereoisomeric group Tσ̃ .
The reference promolecule 7
belongs to the point group T

Fig. 8 Stereoisogram of type III
which belongs to the
RS-stereoisomeric group C1.
The reference promolecule 8
belongs to the point group C1

From the viewpoint of the point-group theory, the reference promolecule 7 belongs
to the point group T, so that a pair of 7/7 is counted once under the action of the
point group Td [16]. From the viewpoint of the RS-stereoisomeric-group theory, on
the other hand, the reference promolecule 7 belongs to the RS-stereoisomeric group
Tσ̃ , so that a quadruplet of 7/7 (doubly contained in the stereoisogram represented by
Fig. 7) is counted once under the action of the RS-stereoisomeric group Tdσ̃̂I (Eq. 56).

4.3 RS-Stereoisomeric groups of type III

Among the RS-stereoisomeric groups listed in Eq. 61, there appear quadruplets belong-
ing to C1 (e.g., 1

2 (ABXp + ABXp) etc. in Eq. 44). They are totally counted by Eq. 76.

4.3.1 Quadruplet of C1

The quadruplet of C1 having 1
2 (ABXp + ABXp) ([θ ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0,

0, 0]. cf. Eq. 100 of Part I) is counted once (Eq. 44) and characterized by the stereoiso-
gram of type III, as shown in Fig. 8.
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Fig. 9 Stereoisogram of type
IV which belongs to the
RS-stereoisomeric group Csσ̃̂I .
The reference promolecule 10
belongs to the point group Cs

The RS-stereoisomeric group C1 is a trivial subgroup of the RS-stereoisomeric
group Tdσ̃̂I for characterizing the tetrahedral skeleton. The type-III stereoisogram
shown in Fig. 8 is drawn by considering the factor group Tdσ̃̂I /T.

From the viewpoint of the point-group theory, the reference promolecule 8 (or 9)
belongs to the point group C1, so that a pair of 8/8 and another pair of 9/9 are counted
separately under the action of the point group Td [16]. This means that the pair of 8/8
is not recognized to be equivalent (stereoisomeric) to the pair of 9/9 under the point
group Td .

From the viewpoint of the RS-stereoisomeric-group theory, on the other hand, the
reference promolecule 8 (or 9) belongs to the RS-stereoisomeric group C1, so that a
quadruplet of 8/8 and 9/9 (contained in the stereoisogram represented by Fig. 8) is
counted once under the action of the RS-stereoisomeric group Tdσ̃̂I (Eq. 44). This
means that the pair of 8/8 is now recognized to be equivalent (RS-diastereomeric) to
the pair of 9/9 under the RS-stereoisomeric group Tdσ̃̂I .

4.4 RS-stereoisomeric groups of type IV

Among the RS-stereoisomeric groups listed in Eq. 62, there appear quadruplets belong-
ing to Csσ̃̂I (A2BX etc. in Eq. 51), Csσ̃ σ̂ (A2pp etc. in Eq. 50), S4σ̃ σ̂ (p2p2 etc. in
Eq. 53), C2vσ̃̂I (A2B2 etc. in Eq. 54), C3vσ̃̂I (A3B etc. in Eq. 55), and Tdσ̃̂I (A4 etc.
in Eq. 57). They are totally counted by Eq. 77.

4.4.1 Quadruplet of Csσ̃̂I

The quadruplet of Csσ̃̂I having A2BX ([θ ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0]. cf.
Eq. 95 of Part I) is counted once (Eq. 51) and characterized by the stereoisogram of
type IV, as shown in Fig. 9. The RS-stereoisomeric group Csσ̃̂I is isomorphic to the
factor group Tdσ̃̂I /T, where its operations are listed in Eq. 81 described above (Eq. 43
of Part I).

From the viewpoint of the point-group theory, the reference promolecule 10
belongs to the point group Cs , so that it is counted once as an achiral promole-
cule under the action of the point group Td [16]. From the viewpoint of the
RS-stereoisomeric-group theory, on the other hand, the reference promolecule 10
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(a) (b)

Fig. 10 Stereoisogram of type IV which belongs to the RS-stereoisomeric group Csσ̃ σ̂ . a The group Csσ̃ σ̂

is considered by itself, where 11 is fixed under the action of Csσ̃ σ̂ . The reference promolecule 11 belongs
to the point group Cs . b The group Csσ̃̂I (strictly speaking, the factor group Tdσ̃̂I /T) is used in place of
the group Csσ̃ σ̂ , where a homomer 11′ as a holantimer is drawn in place of the original holantimer 11

belongs to the RS-stereoisomeric group Csσ̃̂I , so that a quadruplet due to 10 (con-
tained in the stereoisogram represented by Fig. 9) is counted once under the action of
the RS-stereoisomeric group Tdσ̃̂I (Eq. 51).

4.4.2 Quadruplet of Csσ̃ σ̂

The quadruplet of Csσ̃ σ̂ having A2pp ([θ ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0]. cf.
Eq. 97 of Part I) is counted once (Eq. 50) and characterized by the stereoisogram of
type IV, as shown in Fig. 10a. The RS-stereoisomeric group Csσ̃ σ̂ consists of the four
operations (products of cycles) listed in Eq. 84 (Eq. 42 of Part I) and is isomorphic to
the factor group Tdσ̃̂I /T.

If we select the group Csσ̃̂I (Eq. 81) to characterize A2pp, we obtain another
stereoisogram shown in Fig. 10b, where there appear a promolecule 11′ in accord
with (1)(2)(3)(4) and (1)(2 4)(3). Under the action of T, the promolecule 11′ is
homomeric to 11. It follows that Fig. 10b can be used in place of Fig. 10a, if we take
account of the factor group Tdσ̃̂I /T in order to consider the homomerism due to T.

From the viewpoint of the point-group theory, the reference promolecule 11
belongs to the point group Cs , so that it is counted once as an achiral promole-
cule under the action of the point group Td [16]. From the viewpoint of the RS-
stereoisomeric-group theory, on the other hand, the reference promolecule 11 belongs
to the RS-stereoisomeric group Csσ̃ σ̂ , so that a quadruplet due to 11 (contained in
the stereoisogram represented by Fig. 10a) is counted once under the action of the
RS-stereoisomeric group Tdσ̃̂I (Eq. 50).

4.4.3 Quadruplet of S4σ̃ σ̂

The quadruplet of S4σ̃ σ̂ having p2p2 ([θ ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0].
cf. Eq. 114 of Part I) is counted once (Eq. 53) and characterized by the stereoisogram of
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(a) (b)

Fig. 11 Stereoisogram of type IV which belongs to the RS-stereoisomeric group S4σ̃ σ̂ . a The group S4σ̃ σ̂

is considered by itself, where 12 is fixed under the action of S4σ̃ σ̂ . The reference promolecule 11 belongs
to the point group S4. b The factor group Tdσ̃̂I /T is used in place of the group S4σ̃ σ̂ , where a homomer
12′ as a holantimer is drawn in place of the original holantimer 12

type IV, as shown in Fig. 11a. The RS-stereoisomeric
group S4σ̃ σ̂ consists of eight operations (Eq. 46 of Part I):

S4σ̃ σ̂ =
{

I, C2(3), σ̃d(1), σ̃d(6), ̂C2(1), ̂C2(2), S4(3), S3
4(3)

}

(100)

∼
{

(1)(2)(3)(4), (1 3)(2 4), (1)(2 4)(3), (1 3)(2 4)

(1 2)(3 4), (1 4)(2 3), (1 2 3 4), (1 4 3 2)
}

(101)

By considering the normal subgroup C2, the following factor group is generated:

S4σ̃ σ̂ /C2 = {

C2, σ̃d(1)C2, ̂C2(1)C2, S4(3)C2
}

. (102)

The representatives of the respective cosets are used to draw Fig. 11a.
The the factor group S4σ̃ σ̂ /C2 is isomorphic to the factor group Tdσ̃̂I /T. This iso-

morphism can be applied to draw another equivalent stereoisogram shown in Fig. 11b,
where the homomerism between 12 and 12′ under the T-group is taken into consider-
ation.

From the viewpoint of the point-group theory, the reference promolecule 12
belongs to the point group S4, so that it is counted once as an achiral promole-
cule under the action of the point group Td [16]. From the viewpoint of the RS-
stereoisomeric-group theory, on the other hand, the reference promolecule 12 belongs
to the RS-stereoisomeric group S4σ̃ σ̂ , so that a quadruplet due to 12 (contained in
the stereoisogram represented by Fig. 11a) is counted once under the action of the
RS-stereoisomeric group Tdσ̃̂I (Eq. 53).

Note that the symbol S4 is used to denote the cyclic group of order 4 in the present
article, and not to denote the symmetric group of degree 4.
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Fig. 12 Stereoisogram of type
IV which belongs to the
RS-stereoisomeric group C2vσ̃̂I .
The reference promolecule 13
belongs to the point group C2v

4.4.4 Quadruplet of C2vσ̃̂I

The quadruplet of C2vσ̃̂I having A2B2 (Eq. 54) ([θ ]4 =[2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0].
cf. Eq. 93 of Part I) is counted once (Eq. 54) and characterized by the stereoisogram
of type IV, as shown in Fig. 12.

The RS-stereoisomeric group C2vσ̃̂I shown in Eq. 90 generates the factor group
C2vσ̃̂I /C2 shown in Eq. 91, which is isomorphic to the factor group Tdσ̃̂I /T. Thereby,
we obtain the stereoisogram of type IV shown in Fig. 12.

From the viewpoint of the point-group theory, the reference promolecule 13 belongs
to the point group C2v , so that it is counted once as an achiral promolecule under the
action of the point group Td [16]. From the viewpoint of the RS-stereoisomeric-
group theory, on the other hand, the reference promolecule 13 belongs to the RS-
stereoisomeric group C2vσ̃̂I , so that a quadruplet due to 13 (contained in the stereoiso-
gram represented by Fig. 12) is counted once under the action of the RS-stereoisomeric
group Tdσ̃̂I (Eq. 54).

4.4.5 Quadruplet of C3vσ̃̂I

The quadruplet of C3vσ̃̂I having A3B (Eq. 55) ([θ ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0].
cf. Eq. 91 of Part I) is counted once (Eq. 55) and characterized by the stereoisogram
of type IV, as shown in Fig. 13. The RS-stereoisomeric group C3vσ̃̂I shown in Eq. 96
generates the factor group C3vσ̃̂I /C3 shown in Eq. 97, which is isomorphic to the factor
group Tdσ̃̂I /T. Thereby, we obtain the stereoisogram of type IV shown in Fig. 13.

From the viewpoint of the point-group theory, the reference promolecule 14 belongs
to the point group C3v , so that it is counted once as an achiral promolecule under the
action of the point group Td [16]. From the viewpoint of the RS-stereoisomeric-
group theory, on the other hand, the reference promolecule 14 belongs to the RS-
stereoisomeric group C3vσ̃̂I , so that a quadruplet due to 14 (contained in the stereoiso-
gram represented by Fig. 13) is counted once under the action of the RS-stereoisomeric
group Tdσ̃̂I (Eq. 55).
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Fig. 13 Stereoisogram of type
IV which belongs to the
RS-stereoisomeric group C3vσ̃̂I .
The reference promolecule 14
belongs to the point group C3v

Fig. 14 Stereoisogram of type
IV which belongs to the
RS-stereoisomeric group Tdσ̃̂I .
The reference promolecule 15
belongs to the point group Td

4.4.6 Quadruplet of Tdσ̃̂I

The quadruplet of Tdσ̃̂I having A4 ([θ ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0]. cf. Eq. 90
of Part I) is counted once (Eq. 57) and characterized by the stereoisogram of type IV,
as shown in Fig. 14. The stereoisogram is based on the factor group Tdσ̃̂I /T.

From the viewpoint of the point-group theory, the reference promolecule 15 belongs
to the point group Td , so that it is counted once as an achiral promolecule under the
action of the point group Td [16]. From the viewpoint of the RS-stereoisomeric-
group theory, on the other hand, the reference promolecule 15 belongs to the RS-
stereoisomeric group Tdσ̃̂I , so that a quadruplet due to 15 (contained in the stereoiso-
gram represented by Fig. 14) is counted once under the action of the RS-stereoisomeric
group Tdσ̃̂I (Eq. 57).

4.5 RS-stereoisomeric groups of type V

Among the RS-stereoisomeric groups listed in Eq. 63, there appear quadruplets belong-
ing to Cs (ABpp etc. in Eq. 47).
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Fig. 15 Stereoisogram of type
V which belongs to the
RS-stereoisomeric group Cs .
The reference promolecule 16
belongs to the point group Cs

4.5.1 Quadruplet of Cs

The quadruplet of Cs having ABpp ([θ ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0]. cf.
Eq. 102 of Part I) is counted once (Eq. 47) and characterized by the stereoisogram of
type V, as shown in Fig. 15. The vertical equality symbol shows the equivalence based
on the following RS-stereoisomeric group:

Cs = {

I, σd(1)

} ∼
{

(1)(2)(3)(4), (1)(2 4)(3)
}

, (103)

which is equal to the point group Cs . The RS-stereoisomeric group Cs is a subgroup
of the RS-stereoisomeric group Csσ̃̂I shown in Eq. 81 (Eq. 43 of Part I).

From the viewpoint of the point-group theory, the reference promolecule 16 (or 17)
belongs to the point group Cs , so that one achiral promolecule 16 and another achiral
promolecule 17 are counted separately under the action of the point group Td [16].
This means that the achiral promolecules 16 and 17 are recognized to be inequivalent
to each other under the point group Td .

From the viewpoint of the RS-stereoisomeric-group theory, on the other hand, the
reference promolecule 16 (or 17) belongs to the RS-stereoisomeric group Cs , so that
a quadruplet due to 16 and 17 (contained in the stereoisogram represented by Fig. 15)
is counted once under the action of the RS-stereoisomeric group Tdσ̃̂I (Eq. 47). This
means that the achiral promolecules 16 and 17 are now recognized to be equivalent
(RS-diastereomeric) to each other under the RS-stereoisomeric group Tdσ̃̂I .

5 Sphericities under point groups and under RS-stereoisomeric groups

5.1 Sphericities under point groups

According to the USCI approach [1,17], a coset representation G(/Gi ) based on a
point group G is categorized as follows:
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1. If both the point groups, G (global symmetry) and Gi (local symmetry), are achiral,
the coset representation G(/Gi ) is defined as being homospheric and characterized
by a sphericity index ad where d = |G|/|Gi |.

2. If the global point group G is achiral and the local point group Gi is chiral, the
coset representation G(/Gi ) is defined as being enantiospheric and characterized
by a sphericity index cd where d = |G|/|Gi |.

3. If both the point groups, G (global symmetry) and Gi (local symmetry), are chiral,
the coset representation G(/Gi ) is defined as being hemispheric and characterized
by a sphericity index bd where d = |G|/|Gi |.

A coset representation G(/Gi ) is subduced into a subgroup G j . The subduction
G(/Gi ) ↓ G j is represented by a sum of coset representations based on the subgroup
G j . The sum of coset representations is characterized by a product of sphericity indices,
which is called a unit subduced cycle index with chirality fittingness (USCI-CF). For the
example date of the subduction and USCI-CFs of the coset representation Oh(/D3d),
see Table 2 of Part I of this series.

According to the procedure for calculating USCI-CFs [1], the subduction of
Td(/C3v) ↓ Cs is represented as follows (Table C.10 of [1]):

Td(/C3v) ↓ Cs = Cs(/C1) + 2Cs(/Cs) · · ·
(

USCI-CF:a2
1c2

)

, (104)

which corresponds to Oh(/D3d) ↓ C′
s (the 5th row of Table 2 of Part I). Because

the coset representation Cs(/C1) is enantiospheric and |Cs |/|C1| = 2/1 = 2, the
corresponding sphericity index is obtained to be c2. Because the coset representation
Cs(/Cs) is homospheric and |Cs |/|Cs | = 2/2 = 1, the corresponding sphericity index
is obtained to be a1. Hence, the USCI-CF for the subduction represented by Eq. 104
is obtained to be a2

1c2, which operates under the action of the point group Td .

5.2 Sphericities under RS-stereoisomeric groups

An RS-stereoisomeric group and its subgroups (also RS-stereoisomeric groups) are
categorized by means of extended chirality/achirality:

1. If an RS-stereoisomeric group contains a (roto)reflection operation and/or a ligand
reflection operation (with a hat accent in the present notation), it is defined to be
ex-achiral.

2. If an RS-stereoisomeric group contains no (roto)reflection operations nor ligand
reflection operations, it is defined to be ex-chiral.

Note that the prefix ‘ex’ is an abbreviated form of ‘extended’.
Among the 33 subgroups of the RS-stereoisomeric group Tdσ̃̂I listed in Eqs. 59–

63, for example, those listed as type II (Eq. 60) and type III (Eq. 61) are ex-chiral
according to the definition described in the preceding paragraph, while those listed as
type I (Eq. 59), type IV (Eq. 62), and type V (Eq. 62) are ex-achiral.

A coset representation Ǵ(/Ǵi ) based on an RS-stereoisomeric group Ǵ is catego-
rized as follows:

123



J Math Chem (2014) 52:543–574 567

1. If both the RS-stereoisomeric groups, Ǵ (global symmetry) and Ǵi (local sym-
metry), are ex-achiral, the coset representation Ǵ(/Ǵi ) is defined as being
homospheric and characterized by a sphericity index ad where d = |Ǵ|/|Ǵi |.

2. If the global RS-stereoisomeric group Ǵ is ex-achiral and the local RS-
stereoisomeric group Ǵi ) is ex-chiral, the coset representation Ǵ(/Ǵi ) is defined
as being enantiospheric and characterized by a sphericity index cd where d =
|Ǵ|/|Ǵi |.

3. If both the RS-stereoisomeric groups, Ǵ (global symmetry) and Ǵi ) (local symme-
try), are ex-chiral, the coset representation Ǵ(/Ǵi ) is defined as being hemispheric
and characterized by a sphericity index bd where d = |Ǵ|/|Ǵi |.

A coset representation Ǵ(/Ǵi ) is subduced into a subgroup Ǵ j . The subduction
Ǵ(/Ǵi ) ↓ Ǵ j is represented by a sum of coset representations based on the subgroup
Ǵ j . The sum of coset representations is characterized by a product of sphericity indices,
which is also called a unit subduced cycle index with chirality fittingness (USCI-
CF). For example date of the subduction and USCI-CFs of the coset representation
Tdσ̃̂I (/C3vσ̃̂I ), see Table 3 of Part I of this series.

In a similar way to the procedure for subducing coset representations under the
action of point groups [1], the subduction of Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cs is obtained under
the action of RS-stereoisomeric groups as follows:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cs = Cs(/C1) + 2Cs(/Cs) · · · (USCI-CF: a2
1c2), (105)

which has been listed in the 5th row of Table 3 of Part I. Because the coset representation
Cs(/C1) is enantiospheric and |Cs |/|C1| = 2/1 = 2, the corresponding sphericity
index is obtained to be c2. Because the coset representation Cs(/Cs) is homospheric
and |Cs |/|Cs | = 2/2 = 1, the corresponding sphericity index is obtained to be a1.
Hence, the USCI-CF for the subduction represented by Eq. 105 is obtained to be a2

1c2,
which operates under the action of the RS-stereoisomeric group Tdσ̃̂I .

5.3 Chirality fittingness during proligand occupation

Let examine 16 (or 17) shown in Fig. 15 under the action of the RS-stereoisomeric
group Tdσ̃̂I . The proligand A at the position 1 (or B at the position 3) occupies
a one-membered orbit governed by the coset representation Cs(/Cs) (Eq. 105). This
occupation satisfies the chirality fittingness of the homospheric orbit. The pair of chiral
proligands p/p occupies the positions 2 and 4, which construct a two-membered orbit
governed by the coset representation Cs(/C1) (Eq. 105). This occupation satisfies the
chirality fittingness of the enantiospheric orbit. Note that the Cs group in Eq. 105 is
regarded as an RS-stereoisomeric group of type V.

The same promolecule 16 (or 17) shown in Fig. 15 can be examined under the
action of the point group Td , where the subduction represented by Eq. 104 is taken
into consideration. Although the Cs group of Eq. 104 is regarded as a point group, the
discussions described in the preceding paragraph holds true in this case. For symmetry-
itemized enumeration of tetrahedral promolecules under the point group Td , see [16].

Let examine 11 shown in Fig. 10a under the action of the RS-stereoisomeric group
Csσ̃ σ̂ . This promolecule corresponds to the following subduction (the 14th row of
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Table 3 of Part I):

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Csσ̃ σ̂ = Csσ̃ σ̂ (/Cσ̃ ) + Csσ̃ σ̂ (/Cs) · · · (USCI-CF:a2c2) (106)

Because the coset representation Csσ̃ σ̂ (/Cσ̃ ) is enantiospheric and |Csσ̃ σ̂ |/|Cσ̃ | =
4/2 = 2, the corresponding sphericity index is obtained to be c2. Because the coset
representation Csσ̃ σ̂ (/Cs) is homospheric and |Csσ̃ σ̂ |/|Cs | = 4/2 = 2, the corre-
sponding sphericity index is obtained to be a2. Hence, the USCI-CF for the subduction
represented by Eq. 106 is obtained to be a2c2, which operates under the action of the
RS-stereoisomeric group Tdσ̃̂I .

The pair p/p occupies the positions 1 and 3 of 11, which construct a two-membered
enantiospheric orbit governed by the coset representation Csσ̃ σ̂ (/Cσ̃ ). The two A’s
occupy the positions 2 and 4 of 11, which construct a two-membered homospheric
orbit governed by the coset representation Csσ̃ σ̂ (/Cs). Note that the Csσ̃ σ̂ group in
Eq. 106 is regarded as an RS-stereoisomeric group of type IV.

The same promolecule 11 shown in Fig. 10a can be examined under the action
of the point group Td , where the subduction represented by Eq. 104 is taken into
consideration. Because 11 is regarded as belonging to the point group Cs group, each
A at the position 2 or 4 constructs a one-membered homospheric orbit, while the pair
p/p constructs a two-membered enantiospheric orbit.

It should be pointed out that, although 16 (Fig. 15) and 11 (Fig. 10a) belong to the
same point group Cs (⊂ Td ), they belong to distinct RS-stereoisomeric groups, i.e.,
Cs (type V ⊂ Tdσ̃ σ̂ ) and Csσ̃̂I (type IV ⊂ Tdσ̃̂I ). In addition, the distinction can be
diagrammatically demonstrated in terms of their stereoisograms, i.e., Fig. 15 versus
Fig. 10a.

5.4 Ex-achirality versus chirality for type I

The promolecule 2 (or 2) shown in Fig. 2 belongs to the RS-stereoisomeric group C
̂I .

This promolecule corresponds to the following subduction (the 6th row of Table 3 of
Part I):

Tdσ̃̂I (/C3vσ̃̂I ) ↓ C
̂I = 4C

̂I (/C
̂I ) · · · (USCI-CF: a4

1) (107)

Because the RS-stereoisomeric group C
̂I is ex-achiral, the coset representation

C
̂I (/C

̂I ) is determined to be homospheric. As a result, the four positions of 2 accom-
modate different achiral proligands (ABXY) in accord with their homosphericities
under the action of the RS-stereoisomeric group Tdσ̃̂I .

Under the action of the point group Td , in contrast, the promolecule 2 (or 2) should
be regarded as belonging to the point group C1. As a result, this promolecule corre-
sponds to the following subduction (Table C.10 of [1]):

Td(/C3v) ↓ C1 = 4C1(/C1) · · ·
(

USCI-CF:b4
1

)

(108)
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Because the point group C1 is chiral, the coset representation C1(/C1) is determined
to be hemispheric. As a result, the four positions of 2 accommodate different achiral
and/or chiral proligands (involving ABXY) in accord with their hemisphericities under
the action of the point group Td . For symmetry-itemized enumeration of tetrahedral
promolecules under the point group Td , see [16].

The promolecule 3 (or 3) shown in Fig. 3 belongs to the RS-stereoisomeric group
Cσ̂ . This promolecule corresponds to the following subduction (the 4th row of Table
3 of Part I):

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cσ̂ = 2Cσ̂ (/C1) · · · (USCI-CF:c2
2) (109)

Because the RS-stereoisomeric group Cσ̂ is ex-achiral and the RS-stereoisomeric group
C1 is ex-chiral, the coset representation Cσ̂ (/C1) is determined to be enantiospheric.
As a result, each pair of positions of 3 accommodates a pair of p/p (or a pair of q/q)
in accord with its enantiosphericity under the action of the RS-stereoisomeric group
Tdσ̃̂I .

Under the action of the point group Td , the promolecule 3 (or 3) should be regarded
as belonging to the point group C1. Hence, the subduction for characterizing 3 is equal
to Eq. 108. The discussion concerning Eq. 108 is effective to explain the behavior of 3
un the action of the point group Td . For symmetry-itemized enumeration of tetrahedral
promolecules under the point group Td , see [16].

One of the merits of the present enumeration under the RS-stereoisomeric group
Tdσ̃̂I is the finding that stereoisograms of type I (such as Figs. 2 and 3) are ascribed to
the RS-stereoisomeric groups C

̂I and Cσ̂ . This provides sharp contrast to the fact that
we are forced to adopt the point group C1 in characterizing stereoisograms of type I
under the action of the point group Td [16].

As listed in Fig. 9 of Part I, promolecules based on the tetrahedral skeleton 1
(Fig. 1) belong to the respective RS-stereoisomeric groups, which are categorized into
five types (Eqs. 59–63). Such full categorization has been accomplished by taking
account of the RS-stereoisomeric group Tdσ̃̂I . It cannot be accomplished if we obey
the point-group theory based on Td . Note that the C1-point group appears in type I,
type II, and type III, whereas the C1-group as an RS-stereoisomeric group appears
only in type III.

6 Subsets of RS-stereoisomeric groups

Each of the RS-stereoisomeric groups of type IV collected in Eq. 62 is capable of
constructing a subset of RS-stereoisomeric groups, which are categorized into type I
to type V. The process of constructing subsets of RS-Stereoisomeric groups is regarded
as nested subductions for characterizing successive derivations of promolecules.

6.1 Subset concerning Csσ̃ σ̂

The RS-stereoisomeric group Csσ̃ σ̂ of order 4 (Eq. 84) is characterized by a subset
of RS-stereoisomeric groups collected in Eqs. 110–114, which are constructed by
selecting the subgroups of Csσ̃ σ̂ from Eqs. 59–63. The categorization to types I–V,
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Fig. 16 Representative promolecules for characterizing a subset of RS-stereoisomeric groups, which is
concerned with Csσ̃ σ̂ . The two A’s of 11 (Csσ̃ σ̂ , type IV) are successively replaced by other proligands to
give other promolecules belonging to subgroups of Csσ̃ σ̂

which originally stems from the factor group Tdσ̃̂I /T in Eqs. 59–63, turns to stem
from the isomorphic factor group Csσ̃ σ̂ /C1, which is isomorphic to Csσ̃ σ̂ itself.

Type I:SG[I]
Csσ̃ σ̂

=
{

4
Cσ̂

}

(110)

Type II:SG[II]
Csσ̃ σ̂

=
{

3
Cσ̃

}

(111)

Type III:SG[III]
Csσ̃ σ̂

=
{

1
C1

}

, (112)

Type IV:SG[IV]
Csσ̃ σ̂

=
{

14
Csσ̃ σ̂

}

(113)

Type V:SG[V]
Csσ̃ σ̂

=
{

5
Cs

}

(114)

Let us examine the reference promolecule 11 of type IV (Fig. 16), which corre-
sponds to the stereoisogram shown in Fig. 10a. The four substitution positions of 11
are divided in accord with the subduction shown in Eq. 106. Two A’s occupy a two-
membered homospheric orbit governed by Csσ̃ σ̂ (/Cs), while a pair of p/p occupies a
two-membered enantiospheric orbit governed by Csσ̃ σ̂ (/Cσ̃ ).

As shown in Fig. 16, an appropriate substitution of the two A’s of 11 (the pair of
p/p is tentatively fixed) generates a derivative promolecule. This means that we take
account of further subduction of the coset representation Csσ̃ σ̂ (/Cs).

When one A at the position 4 of 11 is replaced by B, there appears the promolecule
16′ of type V, which is homomeric to 16 shown in Fig. 15. This process corresponds to
symmetry reduction from Eqs. 113 to 114. Thus, the subduction of Eq. 106 is further
subduced into Cs as follows:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Csσ̃ σ̂ ↓ Cs

= Csσ̃ σ̂ (/Cσ̃ ) ↓ Cs + Csσ̃ σ̂ (/Cs) ↓ Cs

= Cs(/C1) + 2Cs(/Cs), (115)

which is identical with the direct subduction Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cs (Eq. 105).
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When one A at the position 4 of 11 is replaced by q, there appears the promolecule
19 of type III according to symmetry reduction into Eq. 112. Thus, the subduction of
Eq. 106 is further subduced into C1 as follows:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Csσ̃ σ̂ ↓ C1

= Csσ̃ σ̂ (/Cσ̃ ) ↓ C1 + Csσ̃ σ̂ (/Cs) ↓ C1

= 4C1(/C1) (116)

which is identical with the direct subduction Tdσ̃̂I (/C3vσ̃̂I ) ↓ C1 (cf. the first row of
Table 3 in Part I).

When two A’s at the positions 2 and 4 of 11 are replaced by two q’s, there appears
the promolecule 18 of type II according to symmetry reduction into Eq. 111. Thus,
the subduction of Eq. 106 is further subduced into Cσ̃ as follows:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Csσ̃ σ̂ ↓ Cσ̃

= Csσ̃ σ̂ (/Cσ̃ ) ↓ Cσ̃ + Csσ̃ σ̂ (/Cs) ↓ Cσ̃

= Cσ̃ (/C1) + 2Cσ̃ (/Cσ̃ ), (117)

which is identical with the direct subduction Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cσ̃ (cf. the third row of
Table 3 in Part I).

When two A’s at the positions 2 and 4 of 11 are replaced by a pair of q/q, there
appears the promolecule 3 of type I, the stereoisogram of which is shown in Fig. 3a.
This process corresponds to symmetry reduction into Eq. 110. Thus, the subduction
of Eq. 106 is further subduced into Cσ̂ as follows:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Csσ̃ σ̂ ↓ Cσ̂

= Csσ̃ σ̂ (/Cσ̃ ) ↓ Cσ̂ + Csσ̃ σ̂ (/Cs) ↓ Cσ̂

= 2Cσ̂ (/C1) (118)

which is identical with the direct subduction Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cσ̂ (Eq. 109).

6.2 Subset concerning Csσ̃̂I

The RS-stereoisomeric group Csσ̃̂I of order 4 (Eq. 81) is characterized by a subset
of RS-stereoisomeric groups collected in Eqs. 119–123, which are constructed by
selecting the subgroups of Csσ̃̂I from Eqs. 59–63. The categorization to types I–V is
now considered to stem from the factor group Csσ̃̂I /C1, which is isomorphic to Csσ̃̂I
itself.

Type I:SG[I]
Csσ̃̂I

=
{

6
C

̂I

}

(119)

Type II:SG[II]
Csσ̃̂I

=
{

3
Cσ̃

}

(120)
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Fig. 17 Representative promolecules for characterizing a subset of RS-stereoisomeric groups, which is
concerned with Csσ̃̂I . The two X’s of 21 (Csσ̃̂I , type IV) are successively replaced by other proligands to
give other promolecules belonging to subgroups of Csσ̃̂I

Type III:SG[III]
Csσ̃̂I

=
{

1
C1

}

(121)

Type IV:SG[IV]
Csσ̃̂I

=
{

16
Csσ̃̂I

}

(122)

Type V:SG[V]
Csσ̃̂I

=
{

5
Cs

}

(123)

Let us examine the reference promolecule 21 of type IV (Fig. 17), which has the
constitution ABX2 in place of A2BX of 10 (Fig. 9). Note that the constitutions ABX2

and A2BX are ascribed to the same partition [θ ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0]
(cf. Eq. 95 of Part I). As shown in Fig. 17, an appropriate substitution of two X’s of
21 (A and B are tentatively fixed) generates a derivative promolecule.

When the two X’s of 21 are replaced by a pair of p/p, there appears the promolecule
16 of type V, the stereoisogram of which is shown in Fig. 15. This process obeys
Eq. 123. When one X at the position 4 of 21 is replaced by p, there appears the
promolecule 9′ of type III, which is homomeric to 9 shown in Fig. 8. This process
obeys Eq. 121. When the two X’s at the positions 2 and 4 of 21 are replaced by two
p’s, there appears the promolecule 20 of type II according to Eq. 120. When one X at
the position 4 of 21 is replaced by Y, there appears the promolecule 2 of type I, the
stereoisogram of which is shown in Fig. 2. This process obeys Eq. 119.

6.3 Subset concerning C3vσ̃̂I

The RS-stereoisomeric group C3vσ̃̂I of order 12 (Eq. 96) is characterized by a subset
of RS-stereoisomeric groups collected in Eqs. 124–128, which are constructed by
selecting the subgroups of C3vσ̃̂I from Eqs. 59–63. The categorization to types I–
V stems from the factor group C3vσ̃̂I /C3, which is isomorphic to the factor group
Tdσ̃̂I /T.

Type I: SG[I]
C3vσ̃̂I

=
{

6
C

̂I ,
19

C3̂I

}

(124)

Type II: SG[II]
C3vσ̃̂I

=
{

3
Cσ̃ ,

17
C3σ̃

}

(125)
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Fig. 18 Representative promolecules for characterizing a subset of RS-stereoisomeric groups, which is
concerned with C3vσ̃̂I . The three B’s of 23 (C3vσ̃̂I , type IV) are successively replaced by other proligands
to give other promolecules belonging to subgroups of C3vσ̃̂I

Type III: SG[III]
C3vσ̃̂I

=
{

1
C1,

7
C3

}

(126)

Type IV: SG[IV]
C3vσ̃̂I

=
{

16
Csσ̃̂I ,

28
C3vσ̃̂I

}

(127)

Type V: SG[V]
C3vσ̃̂I

=
{

5
Cs,

18
C3v

}

(128)

Note that Eqs. 124–128 cover all of the 10 subgroups contained in the non-redundant
SSG of C3vσ̃̂I . However, this does not always hold true. A subset of RS-stereoisomeric
groups (e.g., for C2vσ̃̂I ) may not cover the corresponding SSG, because the SSG of
the supergroup (e.g., Tdσ̃̂I ) may suffer from conjugacy.

Let us examine the reference promolecule 23 of type IV (Fig. 18), which has the
constitution AB3 in place of A3B of 14 (Fig. 13). Note that the constitutions AB3 and
A3B correspond to the same constitution [θ ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (cf.
Eq. 91 of Part I). As shown in Fig. 18, an appropriate substitution of three B’s of 23
(A is tentatively fixed) generates a derivative promolecule.

When the two B’s at the 2- and 4-positions of 23 are replaced by a pair of p/p,
there appears the promolecule 16 of type V, the stereoisogram of which is shown in
Fig. 15. This process obeys Eq. 128. When the two X’s at the positions 2 and 4 of 23
are replaced by Xp, there appears the promolecule 9′ of type III, which is homomeric
to 9 shown in Fig. 8. This process obeys Eq. 126, where there emerges no promolecule
of the RS-stereoisomeric group C3. When the three B’s at the positions 2, 3, and 4 of
23 are replaced by three p’s, there appears the promolecule 22 of type II according to
Eq. 125. When the two B’s at the positions 2 and 4 of 23 are replaced by XY, there
appears the promolecule 2 of type I, the stereoisogram of which is shown in Fig. 2. This
process obeys Eq. 124, where there emerges no promolecule of the RS-stereoisomeric
group C3̂I .

7 Conclusion

The PCI method of the USCI approach [1] is applied to the symmetry-itemized enu-
meration of quadruplets of stereoisograms, where the RS-stereoisomeric group Tdσ̃̂I
is used to characterize the tetrahedral skeleton 1 (Fig. 1). The resulting numbers of
quadruplets are itemized in terms of subgroups of Tdσ̃̂I , which are further catego-
rized into five types. Stereoisograms of types I–V are ascribed to subgroups of Tdσ̃̂I ,
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where their features are discussed in comparison between RS-stereoisomeric groups
and point groups.
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